parts catalog

LIFT GP 3C8637 - Caterpillar

3C8637 LIFT GP Caterpillar parts
Alternative (cross code) number:
Caterpillar 3C8637 LIFT GP
Weight: 0.09 pounds 0 kg.

Buy LIFT GP 3C8637 Caterpillar genuine, new aftermarket tractor parts with delivery

  For full view, you need register


Illustration 2 g01292836
Air inlet and exhaust system (Typical example) (2) Aftercooler core (4) Exhaust outlet (5) Turbine side of turbocharger (6) Compressor side of turbocharger (8) Exhaust manifold (9) Exhaust valve (10) Inlet valve (11) Air inletEach cylinder has two inlet valves (10) and two exhaust valves (9) in the cylinder head. The inlet valves open on the inlet stroke. When the inlet valves open, compressed air from the inlet port within the inlet manifold is pushed into the cylinder. The inlet valves close when the piston begins the compression stroke. The air in the cylinder is compressed and the fuel is injected into the cylinder when the piston is near the top of the compression stroke. Combustion begins when the fuel mixes with the air. The force of combustion pushes the piston on the power stroke. The exhaust valves open and the exhaust gases are pushed through the exhaust port into exhaust manifold (8) . After the piston finishes the exhaust stroke, the exhaust valves close and the cycle begins again.Exhaust gases from the exhaust manifold flow into the turbine side of turbocharger (5) . The high temperature exhaust gases cause the turbocharger turbine wheel to turn. The turbine wheel is connected to the shaft that drives the compressor wheel. Exhaust gases from the turbocharger pass through exhaust outlet (4) , through a muffler, and through an exhaust stack.Turbocharger
Illustration 3 g01102643
Turbocharger (Typical example) (4) Air inlet (5) Compressor housing (6) Compressor wheel (7) Bearing (8) Oil inlet port (9) Bearing (10) Turbine housing (11) Turbine wheel (12) Exhaust outlet (13) Oil outlet port (14) Exhaust inletTurbocharger (3) is mounted to exhaust manifold (2) of the engine. All of the exhaust gases go from the exhaust manifold through the turbocharger.The exhaust gases enter the turbocharger and the turbine wheel is turned. Because the turbocharger turbine wheel is connected by a shaft to the turbocharger compressor wheel, the turbine wheel and the compressor wheel turn at very high speeds. The rotation of the compressor wheel pulls clean air through the compressor housing air inlet. The action of the compressor wheel blades causes a compression of the inlet air. This compression allows a larger amount of air to enter the engine. With more air in the engine, the engine is able to burn more fuel. The overall effect is an increase in power.
Illustration 4 g01102644
Turbocharger with wastegate (Typical example) (15) Canister (16) Actuating leverThe engine can operate under conditions of low boost. Low boost is a condition that occurs when the turbocharger produces less than optimum boost pressure. There is a spring that is inside canister (15) . Under low boost, the spring pushes on the diaphragm in canister (15) . This moves actuating lever (16) . The actuating lever closes the wastegate, which will allow the turbocharger to operate at maximum performance.Under conditions of high boost, the wastegate opens. The open wastegate allows exhaust gases to bypass the turbine side of the turbocharger. When the boost pressure increases against the diaphragm in

Back to top
The names Cat, Caterpillar, John Deere, Komatsu, Volvo, Hitachi, Doosan, JCB, Hyundai or any other original equipment manufacturers are registered trademarks of the respective original equipment manufacturers. All names, descriptions, numbers and symbols are used for reference purposes only.
AVSpare.com is in no way associated with any of the manufacturers we have listed. All manufacturer's names and descriptions are for reference only. Cat® and Caterpillar® are registered trademarks of Caterpillar, Inc.