1M2934 TRANSFER Caterpillar parts
Rating:
Alternative (cross code) number:
CA1M2934
1M-2934
1M2934
CA1M2934
1M-2934
1M2934
Weight: 0.70 pounds 0 kg.
Information:
Turbocharger
Illustration 2 g00302786
Turbocharger
(1) Air intake
(2) Compressor housing
(3) Compressor wheel
(4) Bearing
(5) Oil inlet port
(6) Bearing
(7) Turbine housing
(8) Turbine wheel
(9) Exhaust outlet
(10) Oil outlet port
(11) Exhaust inlet The turbocharger is mounted on the outlet of the exhaust manifold in one of two positions on the right side of the engine, toward the top of the engine or to the side of the engine. The exhaust gas from the exhaust manifold enters the exhaust inlet (11) and passes through the turbine housing (7) of the turbocharger. Energy from the exhaust gas causes the turbine wheel (8) to rotate. The turbine wheel is connected by a shaft to the compressor wheel (3).As the turbine wheel rotates, the compressor wheel is rotated. This causes the intake air to be pressurized through the compressor housing (2) of the turbocharger.
Illustration 3 g01206040
Turbocharger with the wastegate
(12) Actuating lever
(13) Wastegate actuator
(14) Line (boost pressure)
Illustration 4 g01334456
Typical example
(14) Line (boost pressure)
(15) Wastegate solenoid When the load on the engine increases, more fuel is injected into the cylinders. The combustion of this additional fuel produces more exhaust gases. The additional exhaust gases cause the turbine and the compressor wheels of the turbocharger to turn faster. As the compressor wheel turns faster, air is compressed to a higher pressure and more air is forced into the cylinders. The increased flow of air into the cylinders allows the fuel to be burnt with greater efficiency. This produces more power.A wastegate is installed on the turbine housing of the turbocharger. The wastegate is a valve that allows exhaust gas to bypass the turbine wheel of the turbocharger. The operation of the wastegate is dependent on the pressurized air (boost pressure) from the turbocharger compressor. The boost pressure acts on a diaphragm that is spring loaded in the wastegate actuator which varies the amount of exhaust gas that flows into the turbine.If a wastegate solenoid (15) is installed, then the wastegate is controlled by the engine Electronic Control Module (ECM). The ECM uses inputs from a number of engine sensors to determine the optimum boost pressure. This will achieve the best exhaust emissions and fuel consumption at any given engine operating condition. The ECM controls the solenoid valve, which regulates the boost pressure to the wastegate actuator.When high boost pressure is needed for the engine performance, a signal is sent from the ECM to the wastegate solenoid. This causes low pressure in the air inlet pipe (14) to act on the diaphragm within the wastegate actuator (13). The actuating rod
Illustration 2 g00302786
Turbocharger
(1) Air intake
(2) Compressor housing
(3) Compressor wheel
(4) Bearing
(5) Oil inlet port
(6) Bearing
(7) Turbine housing
(8) Turbine wheel
(9) Exhaust outlet
(10) Oil outlet port
(11) Exhaust inlet The turbocharger is mounted on the outlet of the exhaust manifold in one of two positions on the right side of the engine, toward the top of the engine or to the side of the engine. The exhaust gas from the exhaust manifold enters the exhaust inlet (11) and passes through the turbine housing (7) of the turbocharger. Energy from the exhaust gas causes the turbine wheel (8) to rotate. The turbine wheel is connected by a shaft to the compressor wheel (3).As the turbine wheel rotates, the compressor wheel is rotated. This causes the intake air to be pressurized through the compressor housing (2) of the turbocharger.
Illustration 3 g01206040
Turbocharger with the wastegate
(12) Actuating lever
(13) Wastegate actuator
(14) Line (boost pressure)
Illustration 4 g01334456
Typical example
(14) Line (boost pressure)
(15) Wastegate solenoid When the load on the engine increases, more fuel is injected into the cylinders. The combustion of this additional fuel produces more exhaust gases. The additional exhaust gases cause the turbine and the compressor wheels of the turbocharger to turn faster. As the compressor wheel turns faster, air is compressed to a higher pressure and more air is forced into the cylinders. The increased flow of air into the cylinders allows the fuel to be burnt with greater efficiency. This produces more power.A wastegate is installed on the turbine housing of the turbocharger. The wastegate is a valve that allows exhaust gas to bypass the turbine wheel of the turbocharger. The operation of the wastegate is dependent on the pressurized air (boost pressure) from the turbocharger compressor. The boost pressure acts on a diaphragm that is spring loaded in the wastegate actuator which varies the amount of exhaust gas that flows into the turbine.If a wastegate solenoid (15) is installed, then the wastegate is controlled by the engine Electronic Control Module (ECM). The ECM uses inputs from a number of engine sensors to determine the optimum boost pressure. This will achieve the best exhaust emissions and fuel consumption at any given engine operating condition. The ECM controls the solenoid valve, which regulates the boost pressure to the wastegate actuator.When high boost pressure is needed for the engine performance, a signal is sent from the ECM to the wastegate solenoid. This causes low pressure in the air inlet pipe (14) to act on the diaphragm within the wastegate actuator (13). The actuating rod
Parts transfer Caterpillar catalog:
1M2930
TRANSFER
Caterpillar
Caterpillar
1M2924
TRANSFER
Caterpillar
Caterpillar
1M2898
TRANSFER G.
Caterpillar
Caterpillar
1J2852
TRANSFER
Caterpillar
Caterpillar
1J2851
TRANSFER-NO.6
Caterpillar
Caterpillar
1J2850
TRANSFER
Caterpillar
Caterpillar
1M2935
TRANSFER
Caterpillar
Caterpillar
1M2936
TRANSFER
Caterpillar
Caterpillar
1M2937
TRANSFER
Caterpillar
Caterpillar
1M2938
TRANSFER
Caterpillar
Caterpillar
1M2939
TRANSFER
Caterpillar
Caterpillar
1M2940
TRANSFER
Caterpillar
Caterpillar